Building multiple weak segmentors for strong mass segmentation in mammogram

نویسندگان

  • Yu Zhang
  • Noriko Tomuro
  • Jacob D. Furst
  • Daniela Stan Raicu
چکیده

This paper proposes to build multiple segmentations for identifying mass contours for a suspicious mass in a mammogram. In this study, by using various parameter settings of the image enhancement functions, we perform multiple segmentations for each suspicious mass (region of interest (ROI)), and multiple mass contours are generated. Each of such segmentations is called a “weak segmentor”, since there is no single image enhancement which produces the optimal segmentation for all mass images. Then for each image, we select the contour which has the highest overlapping ratio as the final segmentation (i.e., the "strong segmentor"). The results show that the overall success rate (81.22%) of the strong segmentor was higher than that of any single weak segmentor. This indicates that using multiple weak segmentors is an effective method to generate a strong mass segmentation for mammograms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying the optimal segmentors for mass classification in mammograms

In this paper, we present the results of our investigation on identifying the optimal segmentor(s) from an ensemble of weak segmentors, used in a Computer-Aided Diagnosis (CADx) system which classifies suspicious masses in mammograms as benign or malignant. This is an extension of our previous work, where we used various parameter settings of image enhancement techniques to each suspicious mass...

متن کامل

Breast abnormalities segmentation using the wavelet transform coefficients aggregation

Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...

متن کامل

Translating and Segmenting Multimodal Medical Volumes with Cycle- and Shape-Consistency Generative Adversarial Network

Synthesized medical images have several important applications, e.g., as an intermedium in cross-modality image registration and as supplementary training samples to boost the generalization capability of a classifier. Especially, synthesized computed tomography (CT) data can provide Xray attenuation map for radiation therapy planning. In this work, we propose a generic cross-modality synthesis...

متن کامل

An Ensemble Algorithm Framework for Automated Stereology of Cervical Cancer

Stereological procedures to quantify mean nuclear volume are commonly used to differentiate cancerous from normal tissue. Automatic quantification of these parameters requires segmentation, which is complicated by the variability in tissue staining and nuclei size. One solution to deal with such alterations in a robust fashion is to use an ensemble of segmentation methods. The goal of this work...

متن کامل

Mammogram Mass Segmentation Using Fractal Oriented Gamma Transformation

Digital mammogram has become the reliable and most effective screening method for the early detection of breast cancer. A novel Fractal Hurst-based Gamma Transformation (FHGT) is presented in this paper for the segmentation of masses from mammograms. This method is a composition of two mechanisms namely detection of masses from digital mammograms and the segmentation of those detected masses. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011